
PGAS Languages -- An Easy-Entry Paradigm for Peta/ExaScale Computing 

By Dinshaw S. Balsara (dbalsara@nd.edu) Physics and Applied Math Departments, 
University of Notre Dame, U.S.A. 

Recent Advances: The last few years have seen the introduction of novel paradigms in parallel 
computing. The MPI-3 standard (Gropp et al. 2014) has made one-sided communication a 
practical reality. Language-based approaches to parallelism have been incorporated into the 
Fortran 2009 standard. These Fortran extensions go under the name of Coarray Fortran (CAF) 
and full-featured compilers that support CAF have become available from Cray and Intel; the 
GNU implementation is expected in 2015. There may also be movement towards crystallizing a 
UPC standard. The latter PGAS languages also excel at supporting one-sided communication, 
albeit in a simpler and more expressive format. Two questions remain: 1) Can they support a 
range of PetaScale applications? 2) Can they compete with the MPI-3 standard? In a recent 
paper (Garain, Balsara & Reid 2015) we have answered these questions in the affirmative and 
the present position paper provides a synopsis as well as identifies a way forward. 

 CAF combines elegance of expression with simplicity of implementation to yield an 
efficient parallel programming language. A video introduction to CAF is available from 
http://www.nd.edu/dbalsara/Numerical_PDE_Course. Elegance of expression results in very 
compact parallel code. It make CAF much easier to teach to students, thus enabling easy entry 
into high performance computing (HPC). Simplicity and ease of entry can also widen the base of 
entrants into Peta/ExaScale computing, thus hastening its widespread acceptance. The existence 
of a standard helps with portability and maintainability. CAF was designed to excel at one-sided 
communication and similar functions that support one-sided communication are also available in 
the recent MPI-3 standard. One-sided communication is expected to be very valuable for 
structured mesh applications involving partial differential equations, amongst other possible 
applications. This paper focuses on a comparison of CAF and MPI-3 for a few very useful 
applications areas that are routinely used for solving partial differential equations on structured 
meshes. The three specific areas are Fast Fourier Techniques, Computational Fluid Dynamics, 
and Multigrid Methods. We stress that we show results from production code that is used for 
science; these are not demonstrator applications. 

 For each of those applications areas, we have developed optimized CAF code and 
optimized MPI code that is based on the one-sided messaging capabilities of MPI-3. Weak 
scalability studies that compare CAF and MPI-3 are presented on up to 65,536 processors. Both 
paradigms scale well, showing that they are well-suited for Petascale-class applications. Some of 
the applications shown (like Fast Fourier Techniques and Computational Fluid Dynamics) 
require large, coarse-grained messaging. Such applications emphasize high bandwidth. Our other 
application (Multigrid Methods) uses pointwise smoothers which require a large amount of fine-
grained messaging. In such applications, a premium is placed on low latency. Our studies show 
that both CAF and MPI-3 offer the twin advantages of high bandwidth and low latency for 

1 
 

http://www.nd.edu/dbalsara/Numerical_PDE_Course


messages of all sizes. Even for large numbers of processors, CAF either draws level with MPI-3 
or shows a slight advantage over MPI-3. Both CAF and MPI-3 have also been shown to provide 
substantial advantages over MPI-2. Fig. 1 shows the result of a weak scaling study using 
multigrid methods on NCSA’s Blue Waters system. We show relative speedup of MPI-3 (red 
bars) and CAF (blue bars) as a function of increasing processor number. Fig. 2 shows a similar 
weak scaling study for a Computational Fluid Dynamics application. 

 

The Way Forward: Cray has developed network-in-a-card (NIC) technologies and NICs are 
expected to be available in high-end Xeon products from Intel. This technology has great 
potential for low-latency, energy-efficient messaging in future supercomputers. MPI-3 also has a 
prominent role to play because of two reasons: 1) The same one-sided programming style 
benefits MPI-3 and CAF. In fact, but for the messaging, our CAF and MPI-3 codes are identical. 
2) On low-end HPC platforms, which lack NIC technologies, CAF compilers are built on top of 
MPI-3. In fact, this is the path taken by present generation GNU and Intel-based CAF compilers. 

 In addition to the weak scalability studies, Garain, Balsara & Reid (2015) have also 
catalogued some of the best-usage strategies that we have found for our successful 
implementations of one-sided messaging in CAF and MPI-3. We show that CAF code is of 
course much easier to write and maintain, and the simpler syntax makes the parallelism easier to 
understand, thereby making it easier for new entrants into Peta/ExaScale computing. Compilers 
that integrate CAF and OpenMP or CAF and OpenACC exist, further facilitating GPU usage. 
CAF operates on teams and/or sub-teams of processors and that feature can also be exploited 
(with modifications) to produce applications that are resilient to the failure of a few processors. 

 The author acknowledges support from NSF-ACI-1307369 and NSF-DMS-1361197. 

References 

S. Garain, D.S. Balsara & J.Reid, Comparing Coarray Fortran (CAF) with MPI for Several 
Structured Mesh PDE Applications ,submitted, Journal of Computational Physics, (2015) 

W. Gropp, E. Lusk & A. Skjellum, Using MPI - 3nd Edition: Portable Parallel Programming 
with the Message Passing Interface, MIT Press (2014) 

2 
 


