The Other 90%
Steve Oberlin, NVIDIA

Make no mistake, Moore’s Law is fading. It's not dead yet, and computing has had to
change technology horses multiple times over the last 40+ years to maintain the
incredible exponential rate of technology advancement, but we are already
experiencing the effects of CMOS’s demise and there is (as yet) no plausible fresh
horse ahead. We first felt the chill as a frequency wall right after the turn of the
century, when single-core microprocessors appeared to top out between 3-4 GHz,
but one could have seen it coming earlier by plotting the fraction of power devoted
to leakage vs. active switching over the prior decade and seen them converging in
that same period of time.

The failure isn’t really in the terms first stated by Gordon Moore, that the
dimensions of silicon features used to fabricate electronics would halve regularly,
delivering 4x the number of transistors and other interesting devices, rather it is in
a corollary he didn’t mention, that CMOS manufacturers would exploit the shrinking
dimensions to get an additional efficiency benefit by cutting the voltage supply each
generation. We are still on track to regularly shrink dimensions through 2020, so
are still reaping a bounty of transistors with each new process node, but the rise of
leakage current as threshold voltage is lowered has slowed the power efficiency
benefit.

There are mitigations. If we don’t fully exploit the reduction in dimensions, if we
lengthen the transistor gate, we can significantly reduce the leakage penalty. Longer
gate length means slower switching, however, so parallelism must increase in order
to compensate for an inability to increase clock speed. This drove the switch from
Moore’s Law-driven performance manifesting in clock speed and single-core
performance to more-or-less constant-clock processors with ever-increasing core
counts.

The architecture features driven by the full force of Moore’s Law, as seen in the last
decades of the prior century, are not optimal in a world of constant (or reducing)
clock, relatively-increasing latencies, and a need to rely on replication (parallelism)
as the dimension supporting performance scaling. CPUs are latency-optimized, and
many of the extreme features (e.g., speculative execution, wide multi-way
instruction issue, branch prediction, etc.) designed to reduce the time it takes to
execute a single thread of instructions start to cost more than the benefit they
deliver when multi-thread execution is more important. Multi-core microprocessor
CPUs cores have simplified architecturally and the most energy-efficient are today
more simple than they were a decade ago.



The architecture of Graphics Processing Unit (GPU) accelerators evolved under
different selection pressures than CPUs. Graphics algorithms are extremely parallel,
so the dimension of optimization for GPUs has always been in the throughput
dimension. As a result, in a world of constant flattening Moore’s Law, their single-
instruction, multiple thread (SIMT) architecture (designed to support hundreds to
thousands of simple cores streaming pixels to computer screens) were optimized to
hide latency, not reduce it. This has proved to be a valuable attribute, when GPUs
were generalized with floating point functional units, for acceleration of HPC
kernels, and led to the rise of accelerated nodes providing the highest efficiency
supercomputing available today. The top 15 of the Green500 most energy-efficient
supercomputers on the Top500 list are all GPU-accelerated systems.

CPU core architecture is also evolving in the parallel dimension, with the addition of
multiple threads and SIMD (“vector”) instructions, but there are still orders of
magnitude differences in inherent latency hiding capability between contemporary
GPUs and CPUs. There is no free lunch, however, and the extreme latency-hiding
ability of GPUs comes at the expense of latency reduction, making single-thread
performance of GPU cores terrible when compared to even modestly-capable CPUs.
Amdahl’s Law, unlike Moore’s Law, is still in full effect, so serial (single-thread)
performance - even in weak scaling scenarios where work is scaled and spread over
many distributed memory nodes in a modern HPC cluster - will ultimately limit the
performance of any less-than-100%-parallel application.

The optimal architecture, then, for a general-purpose scientific workload, ideally
includes both energy-efficient throughput-optimized capacity for the parallel work
and fast latency-optimized capability to execute the serial work as quickly as
possible. The current trend in heterogeneous node HPC architecture is to couple the
most powerful CPUs with the most powerful GPUs, with the ratio of GPUs to CPUs
increasing over time as applications are rewritten to expose more and more
parallelism. The recently-announced DoE CORAL systems take this approach, using
IBM POWER 9 CPUs and NVIDIA Volta GPUs. The success of the competing CPU-only
many-core node architecture will be dependent on how quickly CPU parallelism and
latency-hiding can be increased in the core architecture without sacrificing single-
thread performance. DoE’s Trinity and Cori systems try to straddle this line by
spitting the machine into two partitions, one with a many-weak-core Xeon Phi
processor per node and the other with high-core-performance Xeon CPUs in each
node.

If future NSF compute infrastructure resembles the path being followed by DoE, NSF
science applications are going to face a significant challenge. The common attribute
of both approaches is that ~90% of the performance potential is embodied in the
parallel accelerators. Few science applications running on NSF compute platforms
today appear well-positioned to exploit that potential.

The implications for scientific applications programmers are clear: Writing your
code to exploit distributed memory, using MPI for example, is no longer enough. To



scale performance and sustain a meaningful fraction of the peak performance
potential of the underlying hardware, one must also parallelize the code that
executes on each node by threading, vectorization, or some combination of the two.
Unfortunately, this almost always requires significant work and performance
portable high-level language support is lagging the availability of hardware.
OpenACC and OpenMP, closely-related but distinct directives-based programming
extensions, probably offer the best hope, but their convergence and performance
portability future is somewhat obscure. The good news is that the majority of the
work is in the restructuring of code to expose maximum parallelism, not in the
placement of directives, so switching between the two in the future is likely much
less onerous than the burden of switching to either today.

The bottom line for the scientific HPC user community is that significant investment
in applications re-optimization is once again required. Likely it will be less
burdensome and perplexing than the switch from shared memory SMPs to
distributed memory 15 years ago, but the code base is also many times larger and
more complex. In some cases, programmers may be able to accomplish the required
optimization with minimal domain expertise, but for best results, scientists may
gain huge benefits from examining their algorithms and numerical methods and
perhaps approaching problems from different dimensions. The gain in exposed
fine-grain parallelism could be worth order-of-magnitude-scale performance,
efficiency, and scaling improvements. There is a bolus of work that needs to be
processed and additional encouragement for and enablement of computational
scientists to perform computer science work will pay off in greater scientific
productivity going forward into a post-Moore’s Law, even-more-parallel HPC world.



